Smoothing Daten entfernt zufällige Variation und zeigt Trends und zyklische Komponenten Inhärent in der Sammlung von Daten im Laufe der Zeit übernommen wird, ist eine Form der zufälligen Variation. Es gibt Methoden zur Verringerung der Annullierung der Wirkung aufgrund zufälliger Variation. Eine häufig verwendete Technik in der Industrie ist Glättung. Diese Technik zeigt, wenn sie richtig angewendet wird, deutlicher den zugrunde liegenden Trend, saisonale und zyklische Komponenten. Es gibt zwei verschiedene Gruppen von Glättungsmethoden Mittelungsmethoden Exponentielle Glättungsmethoden Mittelwertbildung ist der einfachste Weg, um Daten zu glätten Wir werden zunächst einige Mittelungsmethoden untersuchen, z. B. den einfachen Mittelwert aller vergangenen Daten. Ein Manager eines Lagers möchte wissen, wie viel ein typischer Lieferant in 1000-Dollar-Einheiten liefert. Heshe nimmt eine Stichprobe von 12 Lieferanten, die zufällig die folgenden Ergebnisse erhalten: Der berechnete Mittelwert oder Mittelwert der Daten 10. Der Manager entscheidet, diese als Schätzung der Ausgaben eines typischen Lieferanten zu verwenden. Ist dies eine gute oder schlechte Schätzung Mittel quadratischen Fehler ist eine Möglichkeit, zu beurteilen, wie gut ein Modell ist Wir berechnen die mittlere quadratische Fehler. Der Fehler true Betrag verbraucht minus die geschätzte Menge. Der Fehler quadriert ist der Fehler oben, quadriert. Die SSE ist die Summe der quadratischen Fehler. Die MSE ist der Mittelwert der quadratischen Fehler. MSE Ergebnisse zum Beispiel Die Ergebnisse sind: Fehler und quadratische Fehler Die Schätzung 10 Die Frage stellt sich: Können wir das Mittel verwenden, um Einkommen zu prognostizieren, wenn wir einen Trend vermuten Ein Blick auf die Grafik unten zeigt deutlich, dass wir dies nicht tun sollten. Durchschnittliche Gewichtungen alle früheren Beobachtungen gleich In Zusammenfassung, wir sagen, dass die einfache Mittelwert oder Mittelwert aller früheren Beobachtungen ist nur eine nützliche Schätzung für die Prognose, wenn es keine Trends. Wenn es Trends, verwenden Sie verschiedene Schätzungen, die den Trend berücksichtigen. Der Durchschnitt wiegt alle früheren Beobachtungen gleichermaßen. Zum Beispiel ist der Durchschnitt der Werte 3, 4, 5 4. Wir wissen natürlich, dass ein Durchschnitt berechnet wird, indem alle Werte addiert werden und die Summe durch die Anzahl der Werte dividiert wird. Ein anderer Weg, den Durchschnitt zu berechnen, besteht darin, daß jeder Wert durch die Anzahl von Werten geteilt wird, oder 33 43 53 1 1.3333 1.6667 4. Der Multiplikator 13 wird das Gewicht genannt. Allgemein: bar frac sum links (frac rechts) x1 links (frac rechts) x2,. ,, Links (frac rechts) xn. Die (linke (frac rechts)) sind die Gewichte und summieren sich natürlich auf 1. Mittelwerte verschieben Gleitende Mittelwerte Mit herkömmlichen Datenbeständen ist der Mittelwert oft die erste, und eine der nützlichsten, zusammenfassenden Statistiken zu berechnen. Wenn die Daten in Form einer Zeitreihe vorliegen, ist das Serienmittel ein nützliches Maß, spiegelt aber nicht die dynamische Natur der Daten wider. Meanwerte, die über kurzgeschlossene Perioden berechnet werden, die entweder der aktuellen Periode vorangehen oder auf die aktuelle Periode zentriert sind, sind oft nützlicher. Weil solche Mittelwerte sich ändern oder sich bewegen, wenn sich die aktuelle Periode von der Zeit t & sub2 ;, t & sub3; usw. bewegt, werden sie als gleitende Durchschnittswerte (Mas) bezeichnet. Ein einfacher gleitender Durchschnitt ist (üblicherweise) der ungewichtete Durchschnitt von k vorherigen Werten. Ein exponentiell gewichteter gleitender Durchschnitt ist im Wesentlichen derselbe wie ein einfacher gleitender Durchschnitt, aber mit Beiträgen zum Mittelwert, der durch ihre Nähe zur aktuellen Zeit gewichtet wird. Da es keine einzige, sondern eine ganze Reihe von gleitenden Mittelwerten für eine beliebige Reihe gibt, kann der Satz von Mas selbst auf Graphen aufgetragen, als Serie analysiert und in der Modellierung und Prognose verwendet werden. Eine Reihe von Modellen kann mit gleitenden Durchschnitten konstruiert werden, und diese werden als MA-Modelle bekannt. Wenn solche Modelle mit autoregressiven (AR) Modellen kombiniert werden, sind die resultierenden zusammengesetzten Modelle als ARMA - oder ARIMA-Modelle bekannt (die I ist für integriert). Einfache gleitende Mittelwerte Da eine Zeitreihe als ein Satz von Werten betrachtet werden kann, können t 1,2,3,4, n der Mittelwert dieser Werte berechnet werden. Wenn wir annehmen, daß n ziemlich groß ist, so wählen wir eine ganze Zahl k, die viel kleiner als n ist. Können wir einen Satz von Blockdurchschnitten oder einfache Bewegungsdurchschnitte (der Ordnung k) berechnen: Jede Messung repräsentiert den Mittelwert der Datenwerte über ein Intervall von k Beobachtungen. Man beachte, daß das erste mögliche MA der Ordnung kgt0 dasjenige für tk ist. Allgemeiner können wir den zusätzlichen Index in die obigen Ausdrücke schreiben und schreiben: Dies bedeutet, daß der geschätzte Mittelwert zum Zeitpunkt t der einfache Mittelwert des beobachteten Wertes zum Zeitpunkt t und den vorhergehenden k -1 Zeitschritten ist. Wenn Gewichte angewandt werden, die den Beitrag von Beobachtungen verringern, die weiter weg in der Zeit sind, wird der gleitende Durchschnitt als exponentiell geglättet. Gleitende Mittelwerte werden häufig als eine Form der Prognose verwendet, wobei der Schätzwert für eine Reihe zum Zeitpunkt t 1, S t1. Wird als MA für den Zeitraum bis einschließlich der Zeit t genommen. z. B. Die heutige Schätzung basiert auf einem Durchschnitt der bisherigen aufgezeichneten Werte bis einschließlich gestern (für tägliche Daten). Einfache gleitende Mittelwerte können als eine Form der Glättung gesehen werden. In dem nachfolgend dargestellten Beispiel wurde der in der Einleitung zu diesem Thema gezeigte Luftverschmutzungs-Datensatz um eine 7-tägige gleitende Linie (MA) ergänzt, die hier in Rot dargestellt ist. Wie man sehen kann, glättet die MA-Linie die Spitzen und Täler in den Daten und kann sehr hilfreich sein, um Trends zu identifizieren. Die Standard-Vorwärtsberechnungsformel bedeutet, dass die ersten k-1-Datenpunkte keinen MA-Wert haben, aber danach rechnen sich die Berechnungen auf den Enddatenpunkt in der Reihe. PM10 tägliche Mittelwerte, Greenwich Quelle: London Air Quality Network, londonair. org. uk Ein Grund für die Berechnung einfacher gleitender Mittelwerte in der beschriebenen Weise ist, dass es Werte für alle Zeitschlitze von der Zeit tk bis zur Gegenwart berechnet werden kann, und Wenn eine neue Messung für die Zeit t 1 erhalten wird, kann die MA für die Zeit t 1 zu dem bereits berechneten Satz addiert werden. Dies bietet eine einfache Vorgehensweise für dynamische Datensätze. Allerdings gibt es einige Probleme mit diesem Ansatz. Es ist vernünftig zu argumentieren, dass sich der Mittelwert der letzten 3 Perioden zum Zeitpunkt t -1, nicht zur Zeit t, befinden sollte. Und für eine MA über eine gerade Anzahl von Perioden vielleicht sollte sie sich in der Mitte zwischen zwei Zeitintervallen befinden. Eine Lösung für dieses Problem besteht darin, zentrierte MA-Berechnungen zu verwenden, bei denen der MA zum Zeitpunkt t der Mittelwert einer symmetrischen Menge von Werten um t ist. Trotz seiner offensichtlichen Verdienste wird dieser Ansatz nicht allgemein verwendet, weil er erfordert, dass Daten für zukünftige Ereignisse verfügbar sind, was möglicherweise nicht der Fall sein kann. In Fällen, in denen die Analyse vollständig aus einer bestehenden Serie besteht, kann die Verwendung von zentriertem Mas bevorzugt sein. Einfache gleitende Mittelwerte können als eine Form von Glättung, Entfernen einiger Hochfrequenzkomponenten einer Zeitreihe und Hervorhebung (aber nicht Entfernen) von Trends in einer ähnlichen Weise wie der allgemeine Begriff der digitalen Filterung betrachtet werden. Tatsächlich sind die gleitenden Mittelwerte eine Form eines linearen Filters. Es ist möglich, eine gleitende Durchschnittsberechnung auf eine Reihe anzuwenden, die bereits geglättet worden ist, d. h. Glätten oder Filtern einer bereits geglätteten Reihe. Zum Beispiel können wir mit einem gleitenden Mittelwert der Ordnung 2 die Berechnungen unter Verwendung von Gewichten betrachten, so daß die MA bei x 2 0,5 x 1 0,5 x 2 gilt. Ebenso ist die MA bei x 3 0,5 x 2 0,5 x 3 Eine zweite Glättungs - oder Filterstufe anwenden, so haben wir 0,5 x 2 0,5 x 3 0,5 (0,5 x 1 0,5 x 2) 0,5 (0,5 x 2 0,5 x 3) 0,25 x 1 0,5 x 2 0,25 x 3, dh die zweistufige Filterung Prozess (oder Faltung) einen variabel gewichteten symmetrischen gleitenden Durchschnitt mit Gewichten erzeugt hat. Mehrere Windungen können sehr komplexe gewichtete gleitende Durchschnittswerte erzeugen, von denen einige speziell in Spezialgebieten, wie etwa in Lebensversicherungsberechnungen, gefunden wurden. Bewegungsdurchschnitte können verwendet werden, um periodische Effekte zu entfernen, wenn sie mit der Länge der Periodizität als bekannt berechnet werden. Zum Beispiel können mit monatlichen Daten saisonale Schwankungen oft entfernt werden (wenn dies das Ziel ist), indem Sie eine symmetrische 12-monatigen gleitenden Durchschnitt mit allen Monaten gleich gewichtet, mit Ausnahme der ersten und letzten, die mit 12 gewichtet werden 13 Monate im symmetrischen Modell (aktuelle Zeit, t - 6 Monate). Die Gesamtzahl wird durch 12 geteilt. Ähnliche Verfahren können für jede wohldefinierte Periodizität angenommen werden. Exponentiell gewichtete Bewegungsdurchschnitte (EWMA) Mit der einfachen gleitenden Durchschnittsformel werden alle Beobachtungen gleich gewichtet. Wenn wir diese Gleichgewichte, alpha t. Jedes der k Gewichte würde 1 k betragen. So dass die Summe der Gewichte würde 1, und die Formel wäre: Wir haben bereits gesehen, dass mehrere Anwendungen dieses Prozesses in die Gewichte variieren führen. Bei exponentiell gewichteten Bewegungsdurchschnitten wird der Beitrag zum Mittelwert aus mehr zeitlich entfernten Beobachtungen verringert, wodurch neuere (lokale) Ereignisse hervorgehoben werden. Im wesentlichen wird ein Glättungsparameter 0lt alpha lt1 eingeführt und die Formel überarbeitet: Eine symmetrische Version dieser Formel würde die Form haben: Wenn die Gewichte im symmetrischen Modell als die Ausdrücke der Terme der Binomialdehnung ausgewählt werden, (1212) 2q. Sie summieren sich auf 1, und wenn q groß wird, nähert sich die Normalverteilung. Dies ist eine Form der Kerngewichtung, wobei das Binomial als Kernfunktion dient. Die im vorigen Teilabschnitt beschriebene zweistufige Faltung ist genau diese Anordnung, wobei q 1 die Gewichte ergibt. Bei der exponentiellen Glättung ist es notwendig, einen Satz von Gewichten zu verwenden, die auf 1 summieren und die geometrisch verkleinern. Die verwendeten Gewichte haben typischerweise die Form: Um zu zeigen, daß diese Gewichte zu 1 summieren, betrachten wir die Erweiterung von 1 als Reihe. Wir können den Ausdruck in Klammern schreiben und erweitern, indem wir die binomische Formel (1- x) p verwenden. Wobei x (1) und p -1, was ergibt, ergibt sich daraus ein gewichtetes gleitendes Mittel der Form: Diese Summation kann als Rekursionsrelation geschrieben werden, was die Berechnung stark vereinfacht und das Problem vermeidet, dass das Gewichtungsregime Sollte strikt unendlich sein, damit die Gewichte auf 1 summieren (für kleine Werte von Alpha ist dies typischerweise nicht der Fall). Die von verschiedenen Autoren verwendete Schreibweise variiert. Einige verwenden den Buchstaben S, um anzuzeigen, daß die Formel im wesentlichen eine geglättete Variable ist, und schreiben: während die kontrolltheoretische Literatur oft Z anstelle von S für die exponentiell gewichteten oder geglätteten Werte verwendet (siehe z. B. Lucas und Saccucci, 1990, LUC1) , Und die NIST-Website für weitere Details und bearbeitete Beispiele). Die Formeln, die oben zitiert wurden, stammen aus der Arbeit von Roberts (1959, ROB1), aber Hunter (1986, HUN1) verwendet einen Ausdruck der Form, die für die Verwendung in einigen Kontrollverfahren geeigneter sein kann. Bei alpha 1 ist die mittlere Schätzung einfach ihr gemessener Wert (oder der Wert des vorherigen Datenelements). Bei 0,5 ist die Schätzung der einfache gleitende Durchschnitt der aktuellen und vorherigen Messungen. In Prognosemodellen wird der Wert S t. Wird oft als Schätzwert oder Prognosewert für die nächste Zeitperiode, dh als Schätzung für x zum Zeitpunkt t 1, verwendet. Somit haben wir: Dies zeigt, dass der Prognosewert zum Zeitpunkt t 1 eine Kombination des vorherigen exponentiell gewichteten gleitenden Durchschnitts ist Plus eine Komponente, die den gewichteten Vorhersagefehler darstellt, epsilon. Zum Zeitpunkt t. Wenn eine Zeitreihe gegeben wird und eine Prognose erforderlich ist, ist ein Wert für alpha erforderlich. Dies kann aus den vorhandenen Daten abgeschätzt werden, indem die Summe der quadrierten Prädiktionsfehler, die mit variierenden Werten von alpha für jedes t 2,3 erhalten werden, ausgewertet wird. Wobei der erste Schätzwert der erste beobachtete Datenwert x ist. Bei Steueranwendungen ist der Wert von alpha wichtig, da er bei der Bestimmung der oberen und unteren Steuergrenzen verwendet wird und die erwartete durchschnittliche Lauflänge (ARL) beeinflusst Bevor diese Kontrollgrenzen unterbrochen werden (unter der Annahme, dass die Zeitreihe eine Menge von zufälligen, identisch verteilten unabhängigen Variablen mit gemeinsamer Varianz darstellt). Unter diesen Umständen ist die Varianz der Kontrollstatistik: (Lucas und Saccucci, 1990): Kontrollgrenzen werden gewöhnlich als feste Vielfache dieser asymptotischen Varianz festgelegt, z. B. - 3-fache Standardabweichung. Wenn beispielsweise & alpha; 0,25 angenommen wird und die zu überwachenden Daten eine Normalverteilung N (0,1) haben, werden bei der Steuerung die Steuergrenzen - 1,134 und der Prozess eine oder andere Grenze in 500 Schritten erreichen im Durchschnitt. Lucas und Saccucci (1990 LUC1) leiten die ARLs für eine breite Palette von Alpha-Werten und unter verschiedenen Annahmen unter Verwendung von Markov-Chain-Prozeduren ab. Sie tabellieren die Ergebnisse, einschließlich der Bereitstellung von ARLs, wenn der Mittelwert des Kontrollprozesses um ein Vielfaches der Standardabweichung verschoben worden ist. Beispielsweise beträgt bei einer 0,5-Verschiebung mit alpha 0,25 die ARL weniger als 50 Zeitschritte. Die oben beschriebenen Ansätze sind als einzelne exponentielle Glättung bekannt. Da die Prozeduren einmal auf die Zeitreihe angewendet werden und dann Analysen oder Steuerprozesse auf dem resultierenden geglätteten Datensatz durchgeführt werden. Wenn der Datensatz einen Trend enthält unddie saisonalen Komponenten, können zwei - oder dreistufige exponentielle Glättungen angewendet werden, um diese Effekte zu entfernen (explizit modellieren) (siehe weiter unten im Abschnitt "Vorhersage" und "NIST"). CHA1 Chatfield C (1975) Die Analyse der Zeitreihen: Theorie und Praxis. Chapman und Hall, London HUN1 Hunter J S (1986) Der exponentiell gewichtete gleitende Durchschnitt. J von Qualitätstechnologie, 18, 203-210 LUC1 Lucas J M, Saccucci M S (1990) Exponentiell gewichtete gleitende durchschnittliche Kontrollschemata: Eigenschaften und Verbesserungen. Technometrics, 32 (1), 1-12 ROB1 Roberts S W (1959) Kontrolltests auf der Grundlage geometrischer Bewegungsdurchschnitte. Technometrics, 1, 239-2506.2 Gleitende Mittelwerte ma 40 elecales, order 5 41 In der zweiten Spalte dieser Tabelle wird ein gleitender Durchschnitt der Ordnung 5 gezeigt, der eine Schätzung des Trendzyklus liefert. Der erste Wert in dieser Spalte ist der Durchschnitt der ersten fünf Beobachtungen (1989-1993) der zweite Wert in der 5-MA-Spalte ist der Durchschnitt der Werte 1990-1994 und so weiter. Jeder Wert in der Spalte 5-MA ist der Mittelwert der Beobachtungen in den fünf Jahren, die auf das entsprechende Jahr zentriert sind. Es gibt keine Werte für die ersten zwei Jahre oder die letzten zwei Jahre, weil wir nicht zwei Beobachtungen auf beiden Seiten haben. In der obigen Formel enthält Spalte 5-MA die Werte von Hut mit k2. Um zu sehen, wie die Trend-Schätzung aussieht, stellen wir sie zusammen mit den Originaldaten in Abbildung 6.7 dar. Grundstück 40 elecsales, HauptsacheResidential Elektrizität salesquot, ylab quotGWhquot. Xlab quotYearquot 41 Zeilen 40 ma 40 elecales, 5 41. col quotredquot 41 Beachten Sie, wie der Trend (in rot) glatter als die ursprünglichen Daten ist und erfasst die Hauptbewegung der Zeitreihe ohne alle geringfügigen Schwankungen. Das Verfahren mit gleitendem Mittel erlaubt keine Abschätzungen von T, wobei t nahe den Enden der Reihe ist, so daß sich die rote Linie nicht zu den Kanten des Graphen beiderseits erstreckt. Später werden wir anspruchsvollere Methoden der Trend-Zyklus-Schätzung verwenden, die Schätzungen nahe den Endpunkten erlauben. Die Reihenfolge des gleitenden Mittelwerts bestimmt die Glätte der Tendenzschätzung. Im Allgemeinen bedeutet eine größere Ordnung eine glattere Kurve. Die folgende Grafik zeigt die Auswirkung der Veränderung der Reihenfolge des gleitenden Durchschnitts für die privaten Stromverkaufsdaten. Einfache gleitende Mittelwerte wie diese sind meist ungerade (z. B. 3, 5, 7 usw.). Das ist also symmetrisch: In einem gleitenden Durchschnitt der Ordnung m2k1 gibt es k frühere Beobachtungen, k spätere Beobachtungen und die mittlere Beobachtung Die gemittelt werden. Aber wenn m gerade war, wäre es nicht mehr symmetrisch. Gleitende Mittelwerte der gleitenden Mittelwerte Es ist möglich, einen gleitenden Durchschnitt auf einen gleitenden Durchschnitt anzuwenden. Ein Grund hierfür besteht darin, einen gleitenden Durchschnitt gleichmäßig symmetrisch zu machen. Zum Beispiel könnten wir einen gleitenden Durchschnitt der Ordnung 4 nehmen und dann einen anderen gleitenden Durchschnitt der Ordnung 2 auf die Ergebnisse anwenden. In Tabelle 6.2 wurde dies für die ersten Jahre der australischen vierteljährlichen Bierproduktionsdaten durchgeführt. Beer2 lt - fenster 40 ausbeer, start 1992 41 ma4 lt - ma 40 beer2, bestellen 4. center FALSE 41 ma2x4 lt - ma 40 beer2, bestellen 4. center TRUE 41 Die Notation 2times4-MA in der letzten Spalte bedeutet ein 4-MA Gefolgt von einem 2-MA. Die Werte in der letzten Spalte werden durch einen gleitenden Durchschnitt der Ordnung 2 der Werte in der vorhergehenden Spalte erhalten. Beispielsweise sind die ersten beiden Werte in der 4-MA-Säule 451,2 (443410420532) 4 und 448,8 (410420532433) 4. Der erste Wert in der 2 × 4-MA-Säule ist der Durchschnitt dieser beiden: 450,0 (451.2448.8) 2. Wenn ein 2-MA einem gleitenden Durchschnitt gleicher Ordnung folgt (wie z. B. 4), wird er als zentrierter gleitender Durchschnitt der Ordnung 4 bezeichnet. Dies liegt daran, dass die Ergebnisse nun symmetrisch sind. Um zu sehen, dass dies der Fall ist, können wir die 2times4-MA wie folgt schreiben: begin hat amp frac Bigfrac (y y y y) frac (y y y y) Big amp frac y frac14y frac14y frac14y frac18y. Ende Es ist jetzt ein gewichteter Durchschnitt der Beobachtungen, aber er ist symmetrisch. Andere Kombinationen von gleitenden Durchschnitten sind ebenfalls möglich. Beispielsweise wird häufig ein 3times3-MA verwendet und besteht aus einem gleitenden Durchschnitt der Ordnung 3, gefolgt von einem anderen gleitenden Durchschnitt der Ordnung 3. Im allgemeinen sollte bei einer geraden Ordnung MA eine gerade Ordnung MA folgen, um sie symmetrisch zu machen. Ähnlich sollte eine ungerade Ordnung MA eine ungerade Ordnung MA folgen. Schätzung des Trendzyklus mit saisonalen Daten Die häufigste Verwendung von zentrierten Bewegungsdurchschnitten ist die Schätzung des Trendzyklus aus saisonalen Daten. Betrachten Sie die 2times4-MA: hat frac y frac14y frac14y frac14y frac18y. Bei der Anwendung auf vierteljährliche Daten wird jedes Quartal des Jahres gleiches Gewicht gegeben, wie die ersten und letzten Bedingungen für das gleiche Quartal in aufeinander folgenden Jahren gelten. Infolgedessen wird die saisonale Veränderung ausgemittelt und die resultierenden Werte von Hut t haben wenig oder keine saisonale Veränderung übrig. Ein ähnlicher Effekt würde mit einem 2 × 8-MA oder einem 2 × 12-MA erhalten werden. Im allgemeinen ist ein 2-mal m-MA äquivalent zu einem gewichteten gleitenden Durchschnitt der Ordnung m1, wobei alle Beobachtungen 1 m betragen, mit Ausnahme der ersten und letzten Glieder, die Gewichte 1 (2 m) nehmen. Also, wenn die saisonale Zeit ist gleichmäßig und der Ordnung m, verwenden Sie eine 2times m-MA, um den Trend-Zyklus zu schätzen. Wenn die saisonale Periode ungerade und der Ordnung m ist, verwenden Sie eine m-MA, um den Trendzyklus abzuschätzen. Insbesondere kann ein 2 × 12-MA verwendet werden, um den Trendzyklus der monatlichen Daten abzuschätzen, und ein 7-MA kann verwendet werden, um den Trendzyklus der Tagesdaten abzuschätzen. Andere Optionen für die Reihenfolge der MA wird in der Regel in Trend-Zyklus Schätzungen durch die Saisonalität in den Daten kontaminiert werden. Beispiel 6.2 Herstellung elektrischer Geräte Abbildung 6.9 zeigt ein 2times12-MA, das auf den Index der elektrischen Ausrüstung angewendet wird. Beachten Sie, dass die glatte Linie keine Saisonalität zeigt, ist sie nahezu identisch mit dem in Abbildung 6.2 gezeigten Trendzyklus, der mit einer viel anspruchsvolleren Methode geschätzt wurde als die gleitenden Durchschnittswerte. Jede andere Wahl für die Reihenfolge des gleitenden Durchschnitts (mit Ausnahme von 24, 36 usw.) hätte zu einer glatten Linie geführt, die einige saisonale Schwankungen zeigt. Plot 40 elecequip, ylab quotNew Aufträge indexquot. (Euroregion) 41 Zeilen 40 ma 40 elecequip, bestellen 12 41. col quotredquot 41 Gewichtete gleitende Mittelwerte Kombinationen gleitender Mittelwerte ergeben gewichtete gleitende Mittelwerte. Zum Beispiel ist das oben diskutierte 2x4-MA äquivalent zu einem gewichteten 5-MA mit Gewichten, die durch frac, frac, frac, frac, frac gegeben werden. Im allgemeinen kann ein gewichtetes m-MA als Hut t sum k aj y geschrieben werden, wobei k (m-1) 2 und die Gewichte durch a, dots, ak gegeben sind. Es ist wichtig, dass die Gewichte alle auf eins addieren und dass sie symmetrisch sind, so dass aj a. Der einfache m-MA ist ein Spezialfall, bei dem alle Gewichte gleich 1m sind. Ein großer Vorteil von gewichteten gleitenden Durchschnitten ist, dass sie eine glattere Schätzung des Trendzyklus ergeben. Anstelle von Beobachtungen, die die Berechnung bei Vollgewicht verlassen und verlassen, werden ihre Gewichte langsam erhöht und dann langsam verringert, was zu einer glatteren Kurve führt. Einige spezifische Sätze von Gewichten sind weit verbreitet. Einige davon sind in Tabelle 6.3 aufgeführt.
No comments:
Post a Comment