Monday 20 November 2017

Arima Vs Gleitenden Durchschnitt


Die ARIMA-Modelle sind in der Theorie die allgemeinste Klasse von Modellen für die Prognose einer Zeitreihe, die durch Differenzierung (falls nötig) vielleicht 8220 stationär gemacht werden kann8221. ARIMA (p, d, q) In Verbindung mit nichtlinearen Transformationen, wie zB Protokollierung oder Abscheidung (falls erforderlich). Eine Zufallsvariable, die eine Zeitreihe ist, ist stationär, wenn ihre statistischen Eigenschaften alle über die Zeit konstant sind. Eine stationäre Reihe hat keinen Trend, ihre Variationen um ihren Mittelwert haben eine konstante Amplitude, und sie wackelt in einer konsistenten Weise. D. h. seine kurzzeitigen Zufallszeitmuster sehen immer im statistischen Sinne gleich aus. Die letztgenannte Bedingung bedeutet, daß ihre Autokorrelationen (Korrelationen mit ihren eigenen vorherigen Abweichungen vom Mittelwert) über die Zeit konstant bleiben oder daß ihr Leistungsspektrum über die Zeit konstant bleibt. Eine zufällige Variable dieser Form kann (wie üblich) als eine Kombination von Signal und Rauschen betrachtet werden, und das Signal (wenn eines offensichtlich ist) könnte ein Muster einer schnellen oder langsamen mittleren Reversion oder einer sinusförmigen Oszillation oder eines schnellen Wechsels im Vorzeichen sein , Und es könnte auch eine saisonale Komponente. Ein ARIMA-Modell kann als ein 8220filter8221 betrachtet werden, der versucht, das Signal vom Rauschen zu trennen, und das Signal wird dann in die Zukunft extrapoliert, um Prognosen zu erhalten. Die ARIMA-Vorhersagegleichung für eine stationäre Zeitreihe ist eine lineare Gleichung (d. H. Regressionstyp), bei der die Prädiktoren aus Verzögerungen der abhängigen Variablen und oder Verzögerungen der Prognosefehler bestehen. Das heißt: Vorhergesagter Wert von Y eine Konstante undeine gewichtete Summe aus einem oder mehreren neuen Werten von Y und einer gewichteten Summe aus einem oder mehreren neuen Werten der Fehler. Wenn die Prädiktoren nur aus verzögerten Werten von Y bestehen, handelt es sich um ein reines autoregressives Modell (8220 selbst-regressed8221), das nur ein Spezialfall eines Regressionsmodells ist und mit einer Standard-Regressions-Software ausgestattet werden kann. Beispielsweise ist ein autoregressives Modell erster Ordnung (8220AR (1) 8221) für Y ein einfaches Regressionsmodell, bei dem die unabhängige Variable nur um eine Periode (LAG (Y, 1) in Statgraphics oder YLAG1 in RegressIt) verzögert ist. Wenn einige der Prädiktoren Verzögerungen der Fehler sind, handelt es sich bei einem ARIMA-Modell nicht um ein lineares Regressionsmodell, da es keine Möglichkeit gibt, 8220last period8217s error8221 als unabhängige Variable festzulegen: Die Fehler müssen auf einer Periodenperiode berechnet werden Wenn das Modell an die Daten angepasst ist. Aus technischer Sicht ist das Problem der Verwendung von verzögerten Fehlern als Prädiktoren, dass die Vorhersagen von model8217s keine linearen Funktionen der Koeffizienten sind. Obwohl es sich um lineare Funktionen der vergangenen Daten handelt. Daher müssen Koeffizienten in ARIMA-Modellen, die verzögerte Fehler enthalten, durch nichtlineare Optimierungsmethoden (8220hill-climbing8221) abgeschätzt werden, anstatt nur ein Gleichungssystem zu lösen. Das Akronym ARIMA steht für Auto-Regressive Integrated Moving Average. Verzögerungen der stationären Reihe in der Prognose-Gleichung werden als autoregressiveQuot-Terme bezeichnet, die Verzögerungen der Prognosefehler werden als quantitative Mittelwert-Term-Terme bezeichnet und eine Zeitreihe, die differenziert werden muß, um stationär gemacht zu werden, wird als eine integrierte quotierte Version einer stationären Reihe bezeichnet. Random-walk und random-trend Modelle, autoregressive Modelle und exponentielle Glättungsmodelle sind alle Sonderfälle von ARIMA Modellen. Ein nicht-saisonales ARIMA-Modell wird als ein quotarIMA-Modell (p, d, q) klassifiziert, wobei p die Anzahl der autoregressiven Terme ist, d die Anzahl der für die Stationarität benötigten nicht-seasonalen Differenzen ist und q die Anzahl der verzögerten Prognosefehler ist Die Vorhersagegleichung. Die Vorhersagegleichung ist wie folgt aufgebaut. Zuerst bezeichne y die d - te Differenz von Y. Das bedeutet, daß die zweite Differenz von Y (der Fall d2) nicht die Differenz von 2 Perioden ist. Es ist vielmehr die erste Differenz der ersten Differenz. Was das diskrete Analogon einer zweiten Ableitung ist, d. h. die lokale Beschleunigung der Reihe anstatt ihres lokalen Takts. In Bezug auf y. Ist die allgemeine Prognosegleichung: Hier sind die gleitenden Durchschnittsparameter (9528217s) so definiert, daß ihre Vorzeichen in der Gleichung negativ sind, und zwar nach der Konvention von Box und Jenkins. Einige Autoren und Software (einschließlich der Programmiersprache R) definieren sie so, dass sie stattdessen Pluszeichen haben. Wenn tatsächliche Zahlen in die Gleichung gesteckt werden, gibt es keine Mehrdeutigkeit, aber es ist wichtig zu wissen, welche Konvention Ihre Software verwendet, wenn Sie die Ausgabe lesen. Oft werden dort die Parameter mit AR (1), AR (2), 8230 und MA (1), MA (2), 8230 usw. bezeichnet. Um das entsprechende ARIMA-Modell für Y zu identifizieren, beginnt man die Reihenfolge der Differenzierung zu bestimmen (D) Notwendigkeit, die Serie zu stationarisieren und die Brutto-Merkmale der Saisonalität zu entfernen, möglicherweise in Verbindung mit einer variationsstabilisierenden Transformation, wie z. B. Protokollierung oder Entleerung. Wenn Sie an diesem Punkt anhalten und voraussagen, dass die differenzierten Serien konstant sind, haben Sie lediglich ein zufälliges oder zufälliges Trendmodell platziert. Die stationäre Reihe kann jedoch weiterhin autokorrelierte Fehler aufweisen, was nahe legt, daß in der Vorhersagegleichung auch einige Anzahl von AR-Terme (p 8805 1) und einige MA-MA-Terme (q 8805 1) benötigt werden. Der Prozess der Bestimmung der Werte von p, d und q, die für eine gegebene Zeitreihe am besten sind, werden in späteren Abschnitten der Notizen (deren Links oben auf dieser Seite sind), aber eine Vorschau von einigen der Typen erörtert Von nicht-saisonalen ARIMA-Modellen, die üblicherweise angetroffen werden, ist unten angegeben. ARIMA (1,0,0) erstes autoregressives Modell: Wenn die Serie stationär und autokorreliert ist, kann sie vielleicht als ein Vielfaches ihres eigenen vorherigen Wertes plus einer Konstante vorhergesagt werden. Die Prognose-Gleichung ist in diesem Fall 8230, die Y auf sich selbst rückläufig um einen Zeitraum verzögert. Dies ist ein 8220ARIMA (1,0,0) constant8221 Modell. Wenn der Mittelwert von Y Null ist, dann würde der konstante Term nicht eingeschlossen werden. Wenn der Steigungskoeffizient 981 & sub1; positiv und kleiner als 1 in der Grße ist (er muß kleiner als 1 in der Grße sein, wenn Y stationär ist), beschreibt das Modell ein Mittelrücksetzverhalten, bei dem der nächste Periodenblockwert 981 1 mal als vorhergesagt werden sollte Weit weg vom Durchschnitt, wie dieser Zeitraum8217s Wert. Wenn 981 & sub1; negativ ist, prognostiziert es ein Mittelwert-Umkehrverhalten mit einer Veränderung von Vorzeichen, d. h. es sagt auch voraus, daß Y unterhalb der mittleren nächsten Periode liegt, wenn sie über dem Mittel dieser Periode liegt. In einem autoregressiven Modell zweiter Ordnung (ARIMA (2,0,0)), würde es auch einen Yt-2-Term auf der rechten Seite geben, und so weiter. Abhängig von den Zeichen und Größen der Koeffizienten kann ein ARIMA (2,0,0) - Modell ein System beschreiben, dessen mittlere Reversion sinusförmig oszillierend erfolgt, wie die Bewegung einer Masse auf einer Feder, die zufälligen Schocks ausgesetzt ist . ARIMA (0,1,0) zufälliger Weg: Wenn die Reihe Y nicht stationär ist, ist das einfachste Modell für sie ein zufälliges Wandermodell, das als Grenzfall eines AR (1) - Modells betrachtet werden kann, in dem die autoregressive Koeffizient ist gleich 1, dh eine Reihe mit unendlich langsamer mittlerer Reversion. Die Vorhersagegleichung für dieses Modell kann folgendermaßen geschrieben werden: wobei der konstante Term die mittlere Periodenperiodenänderung (dh die Langzeitdrift) in Y ist. Dieses Modell könnte als ein No-Intercept-Regressionsmodell angepasst werden, in dem die Die erste Differenz von Y ist die abhängige Variable. Da es nur einen nicht sonderbaren Unterschied und einen konstanten Term enthält, wird er als quotarima (0,1,0) - Modell mit constant. quot klassifiziert. Das random-walk-ohne - driftmodell wäre ein ARIMA (0,1, 0) - Modell ohne konstantes ARIMA (1,1,0) differenziertes autoregressives Modell erster Ordnung: Wenn die Fehler eines Zufallswegmodells autokorreliert werden, kann das Problem möglicherweise durch Hinzufügen einer Verzögerung der abhängigen Variablen zu der Vorhersagegleichung - - ie Durch Rückgang der ersten Differenz von Y auf sich selbst verzögert um eine Periode. Dies würde die folgende Vorhersagegleichung ergeben, die umgeordnet werden kann: Dies ist ein autoregressives Modell erster Ordnung mit einer Ordnung der Nichtsaisonaldifferenzierung und einem konstanten Term - d. e. Ein ARIMA (1,1,0) - Modell. ARIMA (0,1,1) ohne konstante einfache exponentielle Glättung: Eine weitere Strategie zur Korrektur autokorrelierter Fehler in einem Random-Walk-Modell wird durch das einfache exponentielle Glättungsmodell vorgeschlagen. Es sei daran erinnert, daß für einige nichtstationäre Zeitreihen (z. B. solche, die geräuschvolle Fluktuationen um ein sich langsam veränderndes Mittel aufweisen) das Zufallswegmodell nicht ebenso gut funktioniert wie ein gleitender Durchschnitt von vergangenen Werten. Mit anderen Worten, anstatt die letzte Beobachtung als Prognose der nächsten Beobachtung zu nehmen, ist es besser, einen Durchschnitt der letzten Beobachtungen zu verwenden, um das Rauschen herauszufiltern und das lokale Mittel genauer zu schätzen. Das einfache exponentielle Glättungsmodell verwendet einen exponentiell gewichteten gleitenden Durchschnitt vergangener Werte, um diesen Effekt zu erzielen. Die Vorhersagegleichung für das einfache exponentielle Glättungsmodell kann in einer Anzahl mathematisch äquivalenter Formen geschrieben werden. Von denen eine die sogenannte 8220-Fehlerkorrektur8221-Form ist, in der die vorhergehende Prognose in der Richtung ihres Fehlers angepasst wird: Weil e t-1 Y t-1 - 374 t-1 per Definition umgeschrieben werden kann : Es handelt sich um eine ARIMA (0,1,1) - konstante Vorhersagegleichung mit 952 1 1 - 945. Dies bedeutet, dass Sie eine einfache exponentielle Glättung durch Angabe als ARIMA (0,1,1) - Modell ohne passen Konstant und der geschätzte MA (1) - Koeffizient entspricht 1-minus-alpha in der SES-Formel. Denken Sie daran, dass im SES-Modell das durchschnittliche Alter der Daten in den 1-Periodenprognosen 1 945 beträgt, was bedeutet, dass sie tendenziell hinter Trends oder Wendepunkten um etwa 1 945 Perioden zurückbleiben werden. Daraus folgt, dass das Durchschnittsalter der Daten in den 1-Periodenprognosen eines ARIMA-Modells (0,1,1) ohne Konstante 1 (1 - 952 1) ist. Wenn beispielsweise 952 1 0,8 beträgt, ist das Durchschnittsalter 5. Da sich 952 1 1 nähert, wird das ARIMA-Modell (0,1,1) ohne Konstante zu einem sehr langfristigen gleitenden Durchschnitt und als 952 1 Ansätze 0 wird es ein random-walk-ohne-Drift-Modell. What8217s der beste Weg, um für Autokorrelation zu korrigieren: Hinzufügen von AR-Begriffe oder Hinzufügen von MA-Begriffen In den vorherigen beiden Modellen, die oben diskutiert wurden, wurde das Problem der autokorrelierten Fehler in einem zufälligen Fußmodell auf zwei verschiedene Arten behoben: durch Hinzufügen eines Verzögerungswertes der differenzierten Reihe Auf die Gleichung oder das Hinzufügen eines verzögerten Wertes des Prognosefehlers. Welcher Ansatz am besten ist Eine Regel für diese Situation, die später noch ausführlicher diskutiert wird, besteht darin, dass die positive Autokorrelation normalerweise am besten durch Hinzufügen eines AR-Terms zum Modell behandelt wird und negative Autokorrelation in der Regel am besten durch Hinzufügen eines MA-Semester. In der Wirtschafts - und Wirtschaftszeitreihe entsteht häufig eine negative Autokorrelation als Artefakt der Differenzierung. (Im allgemeinen differenziert die Differenzierung die positive Autokorrelation und kann sogar einen Wechsel von positiver zu negativer Autokorrelation bewirken.) Daher wird das ARIMA (0,1,1) - Modell, in dem die Differenzierung von einem MA-Begriff begleitet wird, häufiger verwendet als ein ARIMA (1,1,0) - Modell. ARIMA (0,1,1) mit konstanter einfacher exponentieller Glättung mit Wachstum: Durch die Implementierung des SES-Modells als ARIMA-Modell gewinnen Sie tatsächlich etwas Flexibilität. Zuerst darf der geschätzte MA (1) - Koeffizient negativ sein. Dies entspricht einem Glättungsfaktor von mehr als 1 in einem SES-Modell, das nach dem SES-Modellanpassungsverfahren üblicherweise nicht zulässig ist. Zweitens haben Sie die Möglichkeit, einen konstanten Begriff in das ARIMA-Modell aufzunehmen, wenn Sie es wünschen, um einen durchschnittlichen Trend, der nicht Null ist, abzuschätzen. Das Modell ARIMA (0,1,1) mit Konstante hat die Vorhersagegleichung: Die Ein-Perioden-Prognosen aus diesem Modell sind qualitativ denjenigen des SES-Modells ähnlich, mit der Ausnahme, dass die Trajektorie der Langzeitprognosen typischerweise a ist (Deren Neigung gleich mu ist) und nicht eine horizontale Linie. ARIMA (0,2,1) oder (0,2,2) ohne konstante lineare Exponentialglättung: Lineare exponentielle Glättungsmodelle sind ARIMA-Modelle, die zwei nicht-sauren Differenzen in Verbindung mit MA-Begriffen verwenden. Die zweite Differenz einer Folge Y ist nicht einfach die Differenz von Y und selbst von zwei Perioden verzögert, sondern sie ist die erste Differenz der ersten Differenz - i. e. Die Änderung in der Änderung von Y in der Periode t. Somit ist die zweite Differenz von Y in der Periode t gleich (Yt - Yt - 1) - (Yt - 1 - Yt - 2) Yt - 2Yt - 1Yt - 2. Eine zweite Differenz einer diskreten Funktion ist analog zu einer zweiten Ableitung einer stetigen Funktion: sie mißt zu einem gegebenen Zeitpunkt die Quota-Beschleunigung quot oder quotvequot in der Funktion. Das ARIMA (0,2,2) - Modell ohne Konstante sagt voraus, daß die zweite Differenz der Reihe eine lineare Funktion der letzten beiden Prognosefehler ist, die umgeordnet werden können: wobei 952 1 und 952 2 die MA (1) und MA (2) Koeffizienten. Dies ist ein allgemeines lineares exponentielles Glättungsmodell. Im Wesentlichen das gleiche wie Holt8217s Modell, und Brown8217s Modell ist ein spezieller Fall. Es verwendet exponentiell gewichtete gleitende Mittelwerte, um sowohl eine lokale Ebene als auch einen lokalen Trend in der Reihe abzuschätzen. Die Langzeitprognosen von diesem Modell konvergieren zu einer Geraden, deren Steigung von dem durchschnittlichen Trend abhängt, der gegen Ende der Reihe beobachtet wird. ARIMA (1,1,2) ohne konstante gedämpfte lineare Exponentialglättung. Dieses Modell ist in den begleitenden Dias auf ARIMA-Modellen dargestellt. Es extrapoliert die lokale Tendenz am Ende der Serie, sondern flacht es auf längere Prognose Horizonte, um eine Notiz von Konservatismus, eine Praxis, die empirische Unterstützung hat einzuführen. Siehe den Artikel auf quotWarum die Damped Trend Werke von Gardner und McKenzie und die quotGolden Rulequot Artikel von Armstrong et al. für Details. Es ist grundsätzlich ratsam, bei Modellen zu bleiben, bei denen mindestens einer von p und q nicht größer als 1 ist, dh nicht versuchen, ein Modell wie ARIMA (2,1,2) anzubringen, da dies wahrscheinlich zu Überformung führt Die in den Anmerkungen zur mathematischen Struktur von ARIMA-Modellen näher erläutert werden. Spreadsheet-Implementierung: ARIMA-Modelle wie die oben beschriebenen lassen sich einfach in einer Tabellenkalkulation implementieren. Die Vorhersagegleichung ist einfach eine lineare Gleichung, die sich auf vergangene Werte von ursprünglichen Zeitreihen und vergangenen Werten der Fehler bezieht. Auf diese Weise können Sie eine ARIMA-Prognosekalkulation einrichten, indem Sie die Daten in Spalte A, die Prognoseformel in Spalte B und die Fehler (Daten minus Prognosen) in Spalte C speichern. Die Prognoseformel in einer typischen Zelle in Spalte B wäre einfach Ein linearer Ausdruck, der sich auf Werte in vorhergehenden Zeilen der Spalten A und C bezieht, multipliziert mit den entsprechenden AR - oder MA-Koeffizienten, die in Zellen an anderer Stelle auf dem Spreadsheet gespeichert sind. Moving durchschnittliche und exponentielle Glättungsmodelle Als erster Schritt, , Und lineare Trendmodelle, nicht-saisonale Muster und Trends können mit einem gleitenden Durchschnitt oder Glättungsmodell extrapoliert werden. Die grundlegende Annahme hinter Mittelwertbildung und Glättungsmodellen ist, dass die Zeitreihe lokal stationär mit einem sich langsam verändernden Mittelwert ist. Daher nehmen wir einen bewegten (lokalen) Durchschnitt, um den aktuellen Wert des Mittelwerts abzuschätzen und dann als die Prognose für die nahe Zukunft zu verwenden. Dies kann als Kompromiss zwischen dem mittleren Modell und dem random-walk-ohne-Drift-Modell betrachtet werden. Die gleiche Strategie kann verwendet werden, um einen lokalen Trend abzuschätzen und zu extrapolieren. Ein gleitender Durchschnitt wird oft als "quotsmoothedquot" - Version der ursprünglichen Serie bezeichnet, da die kurzzeitige Mittelung die Wirkung hat, die Stöße in der ursprünglichen Reihe zu glätten. Durch Anpassen des Glättungsgrades (die Breite des gleitenden Durchschnitts) können wir hoffen, eine Art von optimaler Balance zwischen der Leistung des Mittelwerts und der zufälligen Wandermodelle zu erreichen. Die einfachste Art der Mittelung Modell ist die. Einfache (gleichgewichtige) Moving Average: Die Prognose für den Wert von Y zum Zeitpunkt t1, der zum Zeitpunkt t gemacht wird, entspricht dem einfachen Mittelwert der letzten m Beobachtungen: (Hier und anderswo werde ich das Symbol 8220Y-hat8221 stehen lassen Für eine Prognose der Zeitreihe Y, die am frühestmöglichen früheren Zeitpunkt durch ein gegebenes Modell durchgeführt wird.) Dieser Mittelwert wird auf den Zeitraum t (m1) 2 zentriert, was impliziert, daß die Schätzung des lokalen Mittels dazu tendiert, hinter dem wahr zu bleiben Wert des lokalen Mittels um etwa (m1) 2 Perioden. Somit ist das Durchschnittsalter der Daten im einfachen gleitenden Durchschnitt (m1) 2 relativ zu der Periode, für die die Prognose berechnet wird, angegeben: dies ist die Zeitspanne, in der die Prognosen dazu tendieren, hinter den Wendepunkten der Daten zu liegen . Wenn Sie z. B. die letzten 5 Werte mitteln, werden die Prognosen etwa 3 Perioden spät sein, wenn sie auf Wendepunkte reagieren. Beachten Sie, dass, wenn m1, die einfache gleitende Durchschnitt (SMA) - Modell ist gleichbedeutend mit der random walk-Modell (ohne Wachstum). Wenn m sehr groß ist (vergleichbar der Länge des Schätzzeitraums), entspricht das SMA-Modell dem mittleren Modell. Wie bei jedem Parameter eines Prognosemodells ist es üblich, den Wert von k anzupassen, um den besten Quotienten der Daten zu erhalten, d. H. Die kleinsten Prognosefehler im Durchschnitt. Hier ist ein Beispiel einer Reihe, die zufällige Fluktuationen um ein sich langsam veränderndes Mittel zu zeigen scheint. Erstens können wir versuchen, es mit einem zufälligen Fußmodell, das entspricht einem einfachen gleitenden Durchschnitt von 1 Begriff entspricht: Das zufällige gehen Modell reagiert sehr schnell auf Änderungen in der Serie, aber dabei nimmt sie einen Großteil der quotnoisequot in der Daten (die zufälligen Fluktuationen) sowie das Quotsignalquot (das lokale Mittel). Wenn wir stattdessen einen einfachen gleitenden Durchschnitt von 5 Begriffen anwenden, erhalten wir einen glatteren Satz von Prognosen: Der 5-Term-einfache gleitende Durchschnitt liefert in diesem Fall deutlich kleinere Fehler als das zufällige Wegmodell. Das Durchschnittsalter der Daten in dieser Prognose beträgt 3 ((51) 2), so dass es dazu neigt, hinter den Wendepunkten um etwa drei Perioden zu liegen. (Zum Beispiel scheint ein Abschwung in Periode 21 aufgetreten zu sein, aber die Prognosen drehen sich erst nach mehreren Perioden später.) Beachten Sie, dass die Langzeitprognosen des SMA-Modells eine horizontale Gerade sind, genau wie beim zufälligen Weg Modell. Somit geht das SMA-Modell davon aus, dass es keinen Trend in den Daten gibt. Während jedoch die Prognosen aus dem Zufallswegmodell einfach dem letzten beobachteten Wert entsprechen, sind die Prognosen des SMA-Modells gleich einem gewichteten Mittelwert der neueren Werte. Die von Statgraphics berechneten Konfidenzgrenzen für die Langzeitprognosen des einfachen gleitenden Durchschnitts werden nicht breiter, wenn der Prognosehorizont zunimmt. Dies ist offensichtlich nicht richtig Leider gibt es keine zugrunde liegende statistische Theorie, die uns sagt, wie sich die Vertrauensintervalle für dieses Modell erweitern sollten. Allerdings ist es nicht zu schwer, empirische Schätzungen der Konfidenzgrenzen für die längerfristigen Prognosen zu berechnen. Beispielsweise können Sie eine Tabellenkalkulation einrichten, in der das SMA-Modell für die Vorhersage von 2 Schritten im Voraus, 3 Schritten voraus usw. innerhalb der historischen Datenprobe verwendet wird. Sie könnten dann die Stichproben-Standardabweichungen der Fehler bei jedem Prognosehorizont berechnen und dann Konfidenzintervalle für längerfristige Prognosen durch Addieren und Subtrahieren von Vielfachen der geeigneten Standardabweichung konstruieren. Wenn wir einen 9-Term einfach gleitenden Durchschnitt versuchen, erhalten wir sogar noch bessere Prognosen und mehr von einem nacheilenden Effekt: Das Durchschnittsalter beträgt jetzt 5 Perioden ((91) 2). Wenn wir einen 19-term gleitenden Durchschnitt nehmen, steigt das Durchschnittsalter auf 10 an: Beachten Sie, dass die Prognosen tatsächlich hinter den Wendepunkten um etwa 10 Perioden zurückbleiben. Welches Maß an Glättung ist am besten für diese Serie Hier ist eine Tabelle, die ihre Fehlerstatistiken vergleicht, darunter auch einen 3-Term-Durchschnitt: Modell C, der 5-Term-Gleitender Durchschnitt, ergibt den niedrigsten Wert von RMSE mit einer kleinen Marge über die 3 - term und 9-Term-Mittelwerte, und ihre anderen Statistiken sind fast identisch. So können wir bei Modellen mit sehr ähnlichen Fehlerstatistiken wählen, ob wir ein wenig mehr Reaktionsfähigkeit oder ein wenig mehr Glätte in den Prognosen bevorzugen würden. (Rückkehr nach oben.) Browns Einfache Exponentialglättung (exponentiell gewichteter gleitender Durchschnitt) Das oben beschriebene einfache gleitende Durchschnittsmodell hat die unerwünschte Eigenschaft, daß es die letzten k-Beobachtungen gleich und vollständig ignoriert. Intuitiv sollten vergangene Daten in einer allmählicheren Weise diskontiert werden - zum Beispiel sollte die jüngste Beobachtung ein wenig mehr Gewicht als die zweitletzte erhalten, und die 2. jüngsten sollten ein wenig mehr Gewicht als die 3. jüngsten erhalten, und bald. Das einfache exponentielle Glättungsmodell (SES) erfüllt dies. 945 bezeichnen eine quotsmoothing constantquot (eine Zahl zwischen 0 und 1). Eine Möglichkeit, das Modell zu schreiben, besteht darin, eine Serie L zu definieren, die den gegenwärtigen Pegel (d. H. Den lokalen Mittelwert) der Serie, wie er aus Daten bis zu der Zeit geschätzt wird, darstellt. Der Wert von L zur Zeit t wird rekursiv von seinem eigenen vorherigen Wert wie folgt berechnet: Somit ist der aktuelle geglättete Wert eine Interpolation zwischen dem vorher geglätteten Wert und der aktuellen Beobachtung, wobei 945 die Nähe des interpolierten Wertes auf die neueste steuert Überwachung. Die Prognose für die nächste Periode ist einfach der aktuelle geglättete Wert: Äquivalent können wir die nächste Prognose direkt in Form früherer Prognosen und früherer Beobachtungen in einer der folgenden gleichwertigen Versionen ausdrücken. In der ersten Version ist die Prognose eine Interpolation zwischen vorheriger Prognose und vorheriger Beobachtung: In der zweiten Version wird die nächste Prognose durch Anpassung der bisherigen Prognose in Richtung des bisherigen Fehlers um einen Bruchteil 945 erhalten Zeit t. In der dritten Version ist die Prognose ein exponentiell gewichteter (dh diskontierter) gleitender Durchschnitt mit Abzinsungsfaktor 1-945: Die Interpolationsversion der Prognoseformel ist am einfachsten zu verwenden, wenn Sie das Modell in einer Tabellenkalkulation implementieren Einzelne Zelle und enthält Zellverweise, die auf die vorhergehende Prognose, die vorherige Beobachtung und die Zelle mit dem Wert von 945 zeigen. Beachten Sie, dass, wenn 945 1, das SES-Modell zu einem zufälligen Weg-Modell (ohne Wachstum) äquivalent ist. Wenn 945 0 ist, entspricht das SES-Modell dem mittleren Modell, wobei angenommen wird, dass der erste geglättete Wert gleich dem Mittelwert gesetzt ist. (Zurück zum Seitenanfang.) Das Durchschnittsalter der Daten in der Simple-Exponential-Glättungsprognose beträgt 1 945, bezogen auf den Zeitraum, für den die Prognose berechnet wird. (Dies sollte nicht offensichtlich sein, kann aber leicht durch die Auswertung einer unendlichen Reihe gezeigt werden.) Die einfache gleitende Durchschnittsprognose neigt daher zu Verzögerungen hinter den Wendepunkten um etwa 1 945 Perioden. Wenn beispielsweise 945 0,5 die Verzögerung 2 Perioden beträgt, wenn 945 0,2 die Verzögerung 5 Perioden beträgt, wenn 945 0,1 die Verzögerung 10 Perioden und so weiter ist. Für ein gegebenes Durchschnittsalter (d. H. Eine Verzögerung) ist die einfache exponentielle Glättungsprognose (SES) der simplen gleitenden Durchschnittsprognose (SMA) etwas überlegen, weil sie relativ viel mehr Gewicht auf die jüngste Beobachtung - i. e stellt. Es ist etwas mehr quresponsivequot zu Änderungen, die sich in der jüngsten Vergangenheit. Zum Beispiel haben ein SMA - Modell mit 9 Terminen und ein SES - Modell mit 945 0,2 beide ein durchschnittliches Alter von 5 Jahren für die Daten in ihren Prognosen, aber das SES - Modell legt mehr Gewicht auf die letzten 3 Werte als das SMA - Modell und am Gleiches gilt für die Werte von mehr als 9 Perioden, wie in dieser Tabelle gezeigt: 822forget8221. Ein weiterer wichtiger Vorteil des SES-Modells gegenüber dem SMA-Modell ist, dass das SES-Modell einen Glättungsparameter verwendet, der kontinuierlich variabel ist und somit leicht optimiert werden kann Indem ein Quotsolverquot-Algorithmus verwendet wird, um den mittleren quadratischen Fehler zu minimieren. Der optimale Wert von 945 im SES-Modell für diese Serie ergibt sich wie folgt: Das durchschnittliche Alter der Daten in dieser Prognose beträgt 10.2961 3,4 Perioden, was ähnlich wie bei einem 6-term einfachen gleitenden Durchschnitt ist. Die Langzeitprognosen aus dem SES-Modell sind eine horizontale Gerade. Wie im SMA-Modell und dem Random-Walk-Modell ohne Wachstum. Es ist jedoch anzumerken, dass die von Statgraphics berechneten Konfidenzintervalle nun in einer vernünftigen Weise abweichen und dass sie wesentlich schmaler sind als die Konfidenzintervalle für das Zufallswegmodell. Das SES-Modell geht davon aus, dass die Reihe etwas vorhersehbarer ist als das Zufallswandermodell. Ein SES-Modell ist eigentlich ein Spezialfall eines ARIMA-Modells. So dass die statistische Theorie der ARIMA-Modelle eine solide Grundlage für die Berechnung der Konfidenzintervalle für das SES-Modell bildet. Insbesondere ist ein SES-Modell ein ARIMA-Modell mit einer nicht sonderbaren Differenz, einem MA (1) - Term und kein konstanter Term. Ansonsten als quotARIMA (0,1,1) - Modell ohne Konstantquot bekannt. Der MA (1) - Koeffizient im ARIMA-Modell entspricht der Größe 1 - 945 im SES-Modell. Wenn Sie zum Beispiel ein ARIMA-Modell (0,1,1) ohne Konstante an die hier analysierte Serie anpassen, ergibt sich der geschätzte MA (1) - Koeffizient auf 0,7029, was fast genau ein Minus von 0,2961 ist. Es ist möglich, die Annahme eines von Null verschiedenen konstanten linearen Trends zu einem SES-Modell hinzuzufügen. Dazu wird ein ARIMA-Modell mit einer nicht sonderbaren Differenz und einem MA (1) - Term mit konstantem, d. H. Einem ARIMA-Modell (0,1,1) mit konstantem Wert angegeben. Die langfristigen Prognosen haben dann einen Trend, der dem durchschnittlichen Trend über den gesamten Schätzungszeitraum entspricht. Sie können dies nicht in Verbindung mit saisonalen Anpassungen tun, da die saisonalen Anpassungsoptionen deaktiviert sind, wenn der Modelltyp auf ARIMA gesetzt ist. Sie können jedoch einen konstanten langfristigen exponentiellen Trend zu einem einfachen exponentiellen Glättungsmodell (mit oder ohne saisonale Anpassung) hinzufügen, indem Sie die Inflationsanpassungsoption im Prognoseverfahren verwenden. Die prozentuale Zinssatzquote (prozentuale Wachstumsrate) pro Periode kann als der Steigungskoeffizient in einem linearen Trendmodell geschätzt werden, das an die Daten in Verbindung mit einer natürlichen Logarithmuswandlung angepasst ist, oder es kann auf anderen unabhängigen Informationen bezüglich der langfristigen Wachstumsperspektiven beruhen . (Rückkehr nach oben.) Browns Linear (dh doppelt) Exponentielle Glättung Die SMA-Modelle und SES-Modelle gehen davon aus, dass es in den Daten keine Tendenzen gibt (die in der Regel in Ordnung sind oder zumindest nicht zu schlecht für 1- Wenn die Daten relativ verrauscht sind), und sie können modifiziert werden, um einen konstanten linearen Trend, wie oben gezeigt, zu integrieren. Was ist mit kurzfristigen Trends Wenn eine Serie eine unterschiedliche Wachstumsrate oder ein zyklisches Muster zeigt, das sich deutlich gegen das Rauschen auszeichnet, und wenn es notwendig ist, mehr als eine Periode vorher zu prognostizieren, könnte die Schätzung eines lokalen Trends auch sein Ein Problem. Das einfache exponentielle Glättungsmodell kann verallgemeinert werden, um ein lineares exponentielles Glättungsmodell (LES) zu erhalten, das lokale Schätzungen sowohl des Niveaus als auch des Trends berechnet. Das einfachste zeitvariable Trendmodell ist Browns lineares exponentielles Glättungsmodell, das zwei verschiedene geglättete Serien verwendet, die zu verschiedenen Zeitpunkten zentriert sind. Die Prognoseformel basiert auf einer Extrapolation einer Linie durch die beiden Zentren. (Eine weiterentwickelte Version dieses Modells, Holt8217s, wird unten diskutiert.) Die algebraische Form des Brown8217s linearen exponentiellen Glättungsmodells, wie die des einfachen exponentiellen Glättungsmodells, kann in einer Anzahl von unterschiedlichen, aber äquivalenten Formen ausgedrückt werden. Die quadratische quadratische Form dieses Modells wird gewöhnlich wie folgt ausgedrückt: Sei S die einfach geglättete Reihe, die durch Anwendung einfacher exponentieller Glättung auf Reihe Y erhalten wird. Das heißt, der Wert von S in der Periode t ist gegeben durch: (Erinnern wir uns, Exponentielle Glättung, dies wäre die Prognose für Y in der Periode t1.) Dann sei Squot die doppelt geglättete Reihe, die man erhält, indem man eine einfache exponentielle Glättung (unter Verwendung desselben 945) auf die Reihe S anwendet: Schließlich die Prognose für Ytk. Für jedes kgt1 ist gegeben durch: Dies ergibt e & sub1; & sub0; (d. h. Cheat ein Bit, und die erste Prognose ist gleich der tatsächlichen ersten Beobachtung) und e & sub2; Y & sub2; 8211 Y & sub1; Nach denen die Prognosen unter Verwendung der obigen Gleichung erzeugt werden. Dies ergibt die gleichen Anpassungswerte wie die Formel auf der Basis von S und S, wenn diese mit S 1 S 1 Y 1 gestartet wurden. Diese Version des Modells wird auf der nächsten Seite verwendet, die eine Kombination von exponentieller Glättung mit saisonaler Anpassung veranschaulicht. Holt8217s Lineare Exponentialglättung Brown8217s LES-Modell berechnet lokale Schätzungen von Pegel und Trend durch Glätten der letzten Daten, aber die Tatsache, dass dies mit einem einzigen Glättungsparameter erfolgt, legt eine Einschränkung für die Datenmuster fest, die er anpassen kann: den Pegel und den Trend Dürfen nicht zu unabhängigen Preisen variieren. Holt8217s LES-Modell adressiert dieses Problem durch zwei Glättungskonstanten, eine für die Ebene und eine für den Trend. Zu jedem Zeitpunkt t, wie in Brown8217s-Modell, gibt es eine Schätzung L t der lokalen Ebene und eine Schätzung T t der lokalen Trend. Hier werden sie rekursiv aus dem zum Zeitpunkt t beobachteten Wert von Y und den vorherigen Schätzungen von Pegel und Trend durch zwei Gleichungen berechnet, die exponentielle Glättung separat anwenden. Wenn der geschätzte Pegel und der Trend zum Zeitpunkt t-1 L t82091 und T t-1 sind. Dann ist die Prognose für Y tshy, die zum Zeitpunkt t-1 gemacht worden wäre, gleich L t-1 T t-1. Wenn der tatsächliche Wert beobachtet wird, wird die aktualisierte Schätzung des Pegels rekursiv berechnet, indem zwischen Y tshy und seiner Prognose L t-1 T t-1 unter Verwendung von Gewichten von 945 und 1- 945 interpoliert wird. Die Änderung des geschätzten Pegels, Nämlich L t 8209 L t82091. Kann als eine verrauschte Messung des Trends zum Zeitpunkt t interpretiert werden. Die aktualisierte Schätzung des Trends wird dann rekursiv berechnet, indem zwischen L t 8209 L t82091 und der vorherigen Schätzung des Trends T t-1 interpoliert wird. Unter Verwendung der Gewichte von 946 und 1-946: Die Interpretation der Trendglättungskonstanten 946 ist analog zu der Pegelglättungskonstante 945. Modelle mit kleinen Werten von 946 nehmen an, dass sich der Trend mit der Zeit nur sehr langsam ändert, während Modelle mit Größere 946 nehmen an, dass sie sich schneller ändert. Ein Modell mit einem großen 946 glaubt, dass die ferne Zukunft sehr unsicher ist, da Fehler in der Trendschätzung bei der Prognose von mehr als einer Periode ganz wichtig werden. (Rückkehr nach oben) Die Glättungskonstanten 945 und 946 können auf übliche Weise geschätzt werden, indem der mittlere quadratische Fehler der 1-Schritt-Voraus-Prognosen minimiert wird. Wenn dies in Statgraphics getan wird, erweisen sich die Schätzungen als 945 0.3048 und 946 0,008. Der sehr geringe Wert von 946 bedeutet, dass das Modell eine sehr geringe Veränderung im Trend von einer Periode zur nächsten annimmt, so dass dieses Modell im Grunde versucht, einen langfristigen Trend abzuschätzen. Analog zur Vorstellung des Durchschnittsalters der Daten, die bei der Schätzung der lokalen Ebene der Serie verwendet werden, ist das durchschnittliche Alter der Daten, die bei der Schätzung des lokalen Trends verwendet werden, proportional zu 1 946, wenn auch nicht exakt gleich . In diesem Fall erweist sich dies als 10.006 125. Dies ist eine sehr genaue Zahl, da die Genauigkeit der Schätzung von 946 nicht wirklich 3 Dezimalstellen beträgt, sondern sie ist von der gleichen Größenordnung wie die Stichprobengröße von 100 Dieses Modell ist Mittelung über eine ziemlich große Geschichte bei der Schätzung der Trend. Das Prognose-Diagramm unten zeigt, dass das LES-Modell einen etwas größeren lokalen Trend am Ende der Serie schätzt als der im SEStrend-Modell geschätzte konstante Trend. Außerdem ist der Schätzwert von 945 fast identisch mit dem, der durch Anpassen des SES-Modells mit oder ohne Trend erhalten wird, so dass dies fast das gleiche Modell ist. Nun, sehen diese aussehen wie vernünftige Prognosen für ein Modell, das soll Schätzung einer lokalen Tendenz Wenn Sie 8220eyeball8221 dieser Handlung, sieht es so aus, als ob der lokale Trend nach unten am Ende der Serie gedreht hat Was ist passiert Die Parameter dieses Modells Wurden durch Minimierung des quadratischen Fehlers von 1-Schritt-Voraus-Prognosen, nicht längerfristigen Prognosen, abgeschätzt, wobei der Trend keinen großen Unterschied macht. Wenn alles, was Sie suchen, 1-Schritt-vor-Fehler sind, sehen Sie nicht das größere Bild der Trends über (sagen) 10 oder 20 Perioden. Um dieses Modell im Einklang mit unserer Augapfel-Extrapolation der Daten zu erhalten, können wir die Trendglättungskonstante manuell anpassen, so dass sie eine kürzere Basislinie für die Trendschätzung verwendet. Wenn wir beispielsweise 946 0,1 setzen, beträgt das durchschnittliche Alter der Daten, die bei der Schätzung des lokalen Trends verwendet werden, 10 Perioden, was bedeutet, dass wir den Trend über die letzten 20 Perioden oder so mitteln. Here8217s, was das Prognose-Plot aussieht, wenn wir 946 0,1 setzen, während 945 0,3 halten. Dies scheint intuitiv vernünftig für diese Serie, obwohl es wahrscheinlich gefährlich, diesen Trend mehr als 10 Perioden in der Zukunft zu extrapolieren. Was ist mit den Fehlerstatistiken Hier ist ein Modellvergleich für die beiden oben gezeigten Modelle sowie drei SES-Modelle. Der optimale Wert von 945 für das SES-Modell beträgt etwa 0,3, aber ähnliche Ergebnisse (mit etwas mehr oder weniger Reaktionsfähigkeit) werden mit 0,5 und 0,2 erhalten. (A) Holts linearer Exp. Glättung mit alpha 0.3048 und beta 0,008 (B) Holts linear exp. Glättung mit alpha 0,3 (E) Einfache exponentielle Glättung mit alpha 0,3 (E) Einfache exponentielle Glättung mit alpha 0,2 Ihre Stats sind nahezu identisch, so dass wir wirklich die Wahl auf der Basis machen können Von 1-Schritt-Vorhersagefehlern innerhalb der Datenprobe. Wir müssen auf andere Überlegungen zurückgreifen. Wenn wir glauben, dass es sinnvoll ist, die aktuelle Trendschätzung auf das, was in den letzten 20 Perioden passiert ist, zugrunde zu legen, können wir für das LES-Modell mit 945 0,3 und 946 0,1 einen Fall machen. Wenn wir agnostisch sein wollen, ob es einen lokalen Trend gibt, dann könnte eines der SES-Modelle leichter zu erklären sein, und würde auch für die nächsten 5 oder 10 Perioden mehr Mittelprognosen geben. (Rückkehr nach oben.) Welche Art von Trend-Extrapolation am besten ist: horizontal oder linear Empirische Evidenz deutet darauf hin, dass es, wenn die Daten bereits für die Inflation angepasst wurden (wenn nötig), unprätent ist, kurzfristige lineare Werte zu extrapolieren Trends sehr weit in die Zukunft. Die heutigen Trends können sich in Zukunft aufgrund unterschiedlicher Ursachen wie Produktveralterung, verstärkte Konkurrenz und konjunkturelle Abschwünge oder Aufschwünge in einer Branche abschwächen. Aus diesem Grund führt eine einfache exponentielle Glättung oft zu einer besseren Out-of-Probe, als ansonsten zu erwarten wäre, trotz ihrer quotnaivequot horizontalen Trend-Extrapolation. Damped Trendmodifikationen des linearen exponentiellen Glättungsmodells werden in der Praxis häufig auch eingesetzt, um in seinen Trendprojektionen eine Note des Konservatismus einzuführen. Das Dämpfungs-Trend-LES-Modell kann als Spezialfall eines ARIMA-Modells, insbesondere eines ARIMA-Modells (1,1,2), implementiert werden. Es ist möglich, Konfidenzintervalle um langfristige Prognosen zu berechnen, die durch exponentielle Glättungsmodelle erzeugt werden, indem man sie als Spezialfälle von ARIMA-Modellen betrachtet. (Achtung: Nicht alle Software berechnet die Konfidenzintervalle für diese Modelle korrekt.) Die Breite der Konfidenzintervalle hängt ab von (i) dem RMS-Fehler des Modells, (ii) der Art der Glättung (einfach oder linear) (iii) dem Wert (S) der Glättungskonstante (n) und (iv) die Anzahl der Perioden vor der Prognose. Im Allgemeinen breiten sich die Intervalle schneller aus, da 945 im SES-Modell größer wird und sich viel schneller ausbreiten, wenn lineare statt einfache Glättung verwendet wird. Dieses Thema wird im Abschnitt "ARIMA-Modelle" weiter erläutert. (Zurück zum Seitenanfang.) 8.4 Verschieben von Durchschnittsmodellen Anstatt vergangene Werte der Prognosedatei in einer Regression zu verwenden, verwendet ein gleitendes Durchschnittsmodell vergangene Prognosefehler in einem Regressionsmodell. Y c et the theta e dots theta e, wobei et weißes Rauschen ist. Wir bezeichnen dies als MA (q) - Modell. Natürlich beobachten wir nicht die Werte von et, also ist es nicht wirklich Regression im üblichen Sinne. Man beachte, daß jeder Wert von yt als gewichteter gleitender Durchschnitt der letzten Prognosefehler betrachtet werden kann. Allerdings sollten gleitende Durchschnittsmodelle nicht mit der gleitenden glatten Glättung verwechselt werden, die wir in Kapitel 6 besprochen haben. Ein gleitendes Durchschnittsmodell wird für die Prognose zukünftiger Werte verwendet, während die gleitende gleitende Durchschnittskurve für die Schätzung des Trendzyklus der vergangenen Werte verwendet wird. Abbildung 8.6: Zwei Beispiele für Daten aus gleitenden Durchschnittsmodellen mit unterschiedlichen Parametern. Links: MA (1) mit yt 20e t 0,8e t-1. Rechts: MA (2) mit y t e t - e t-1 0,8e t-2. In beiden Fällen ist e t normal verteiltes Weißrauschen mit Mittelwert Null und Varianz Eins. Abbildung 8.6 zeigt einige Daten aus einem MA (1) - Modell und einem MA (2) - Modell. Das Ändern der Parameter theta1, dots, thetaq führt zu unterschiedlichen Zeitreihenmustern. Wie bei autoregressiven Modellen wird die Varianz des Fehlerterms et nur den Maßstab der Reihe ändern, nicht die Muster. Es ist möglich, jedes stationäre AR (p) - Modell als MA (infty) - Modell zu schreiben. Beispielsweise können wir dies bei einem AR (1) - Modell demonstrieren: begin yt amp phi1y et amp phi1 (phi1y e) et amp phi12y phi1 e et amp phi13y phi12e phi1 e et amptext end Vorausgesetzt -1 lt phi1 lt 1 wird der Wert von phi1k kleiner, wenn k größer wird. So erhalten wir schließlich yt und phi1 e phi12 e phi13 e cdots, ein MA (infty) Prozess. Das umgekehrte Ergebnis gilt, wenn wir den MA-Parametern einige Einschränkungen auferlegen. Dann wird das MA-Modell invertierbar. Das heißt, dass wir alle invertierbaren MA (q) Prozess als AR (infty) Prozess schreiben können. Invertible Modelle sind nicht einfach, damit wir von MA-Modellen auf AR-Modelle umwandeln können. Sie haben auch einige mathematische Eigenschaften, die sie in der Praxis einfacher zu verwenden. Die Invertibilitätsbedingungen sind den stationären Einschränkungen ähnlich. Für ein MA (1) Modell: -1lttheta1lt1. Für ein MA (2) - Modell: -1lttheta2lt1, theta2theta1 gt-1, theta1 - theta2 lt 1. Kompliziertere Bedingungen gelten für qge3. Wiederum wird R diese Einschränkungen bei der Schätzung der Modelle berücksichtigen.

No comments:

Post a Comment